# Wind Energy

# Wind Energy

JIM TREPKA





Wind Energy by Jim Trepka is licensed under a <u>Creative Commons</u> <u>Attribution 4.0 International License</u>, except where otherwise noted.

# Contents

|            | Introduction                           | 1  |
|------------|----------------------------------------|----|
| 1.         | Why Wind Energy                        | 3  |
| 2.         | Wind Energy in Iowa                    | 6  |
| 3.         | <u>Theoretical Power of Wind</u>       | 11 |
| 4.         | Power from Wind                        | 14 |
| <b>5</b> . | HAWT vs. VAWT                          | 17 |
| 6.         | Why Are Turbine Blades in Groups of 3? | 25 |
| <b>7</b> . | Components of a Wind Generator         | 27 |
|            | Appendix                               | 31 |

| <del>-</del>                                                                                    |             |     |
|-------------------------------------------------------------------------------------------------|-------------|-----|
| This open source book contains power points, web links that are useful in teaching wind energy. | worksneets, | and |
|                                                                                                 |             |     |
|                                                                                                 |             |     |
|                                                                                                 |             |     |

## Advantages of Wind Energy

- "Wind prices are extremely competitive right now, offering lower costs than other possible resources".
- It offers many environmental advantages compared to its major rival coal generation.
- source: <a href="http://www.nrel.gov/docs/fy05osti/37602.pdf">http://www.nrel.gov/docs/fy05osti/37602.pdf</a>.
- <a href="https://www.awea.org/falling-wind-energy-costs">https://www.awea.org/falling-wind-energy-costs</a>

#### **Environmental Problems with Coal**

- Burning coal causes roughly \$60 billion a year in health cost, mostly because of thousands of premature deaths from air pollution according to the National Academy of Sciences.
- Damages average \$.032 /KWhr source: <a href="http://www.nytimes.com/2009/10/20/science/earth/">http://www.nytimes.com/2009/10/20/science/earth/</a>
   20fossil.html?\_r=2&scp=6&sq=coal%20pollution&st=cse

# In one year, a typical coal plant generates

• 10,000 tons of sulfur dioxide (SO2), which causes acid rain

• 10,200 tons of nitrogen oxide (NOx). NOx leads to formation of ozone (smog).

- 720 tons of carbon monoxide (CO)
- 220 tons of hydrocarbons, volatile organic compounds (VOC), which form ozone.

source: http://www.ucsusa.org/clean\_energy/coalvswind/c02c.html
Further Info on Environmental Effects of Coal

 Further information on the environmental effects of using coal to generate electricity can be found at <a href="http://www.ucsusa.org/clean\_energy/coalvswind/c01.html">http://www.ucsusa.org/clean\_energy/coalvswind/c01.html</a> and <a href="http://en.wikipedia.org/wiki/">http://en.wikipedia.org/wiki/</a> Environmental effects of coal

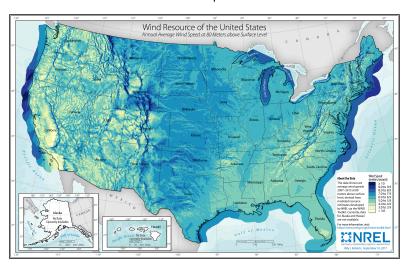
In one year, a typical coal plant generates (continued)

- 170 pounds of mercury, will lead to neurological damage.
- 225 pounds of arsenic
- 114 pounds of lead, 4 pounds of cadmium, and trace amounts of uranium.
- 3,700,000 tons of carbon dioxide (CO2) –as much carbon dioxide as cutting down 161 million trees. Carbon dioxide is a global warming gas.

source: <a href="http://www.ucsusa.org/clean\_energy/coalvswind/c02c.html">http://www.ucsusa.org/clean\_energy/coalvswind/c02c.html</a>
Future of Wind Energy

- Wind suffers from being most available when electricity is least in demand (winter & nights).
- Smart grid applications may make wind more desirable such as charging an electric car during the evening hours

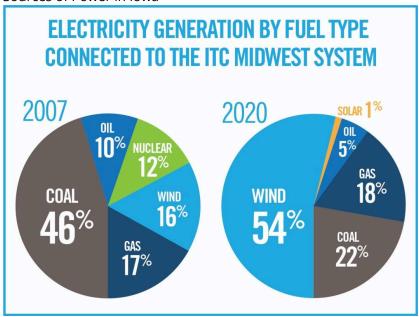
## Future of Wind Energy (Continued)


 DOE (Department of Energy) has determined that it is feasible that 20% of the nation's electrical energy could be generated by wind by the year 2030. See 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply at <a href="http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf">http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf</a>.

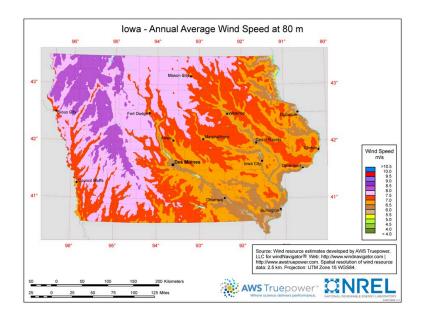
This power point discusses the advantages of wind over other energy sources.

**Why Wind Energy** 

# Wind Energy in Iowa


# The United States Wind Resource Map




US Electric Grid



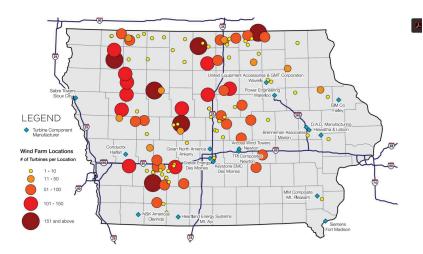
#### Sources of Power in Iowa



Iowa's Winds Speeds Annually



# Iowa Average Wind Speeds by Month


- https://en.wikipedia.org/wiki/Wind\_power\_in\_lowa
- Note that the lowest outputs are in July & August.

# Iowa #2 in Wind Energy Generation

- Iowa is 3rd in the nation in installed capacity
- 36.9% of electrical production in lowa is from wind.
- 4,145 wind turbines online in the state

source <a href="https://www.awea.org/statefactsheets">https://www.awea.org/statefactsheets</a>

Wind Turbine Manufacturing and Farms



lowa is prominent in the national wind industry

· lowa is 2nd nationally in installed capacity.

# http://www.neo.ne.gov/statshtml/205.htm

 Note that MidAmerican Energy (Berkshire Hathaway) is 2nd in the rankings of the largest owner of wind turbines for a utility in the nation. <a href="https://www.statista.com/statistics/499486/wind-power-ownership-in-the-us-by-operator/">https://www.statista.com/statistics/499486/wind-power-ownership-in-the-us-by-operator/</a>

# Service Area of MidAmerican Energy http://www.google.com/

url?sa=i&url=https%3A%2F%2Fwww.midamericanenergy.com%2Fs ites%2FSatellite%3Fc%3DPage%26childpagename%3DMEC%252FP age%252FStandardPage%252FLayout%26cid%3D1528308446699 %26d%3DTouch%26packedargs%3Dd%253DTouch%26pagename %3DMEC%252FPrimaryWrapper&psig=AOvVaw2EFYmMpqCPLq0R K6ANrLh5&ust=1635536964133000&source=images&cd=vfe&ved =0CAsQjRxqFwoTCPiOs5Lw7fMCFQAAAAAdAAAAABAD

lowa is prominent in the national wind industry

- https://www.awea.org/manufacturing
- Also, observe the amount of manufacturing in Iowa and bordering states (MN, WI, IL, NE, SD) for wind turbines and components (Figure 18).

This power point covers wind energy in lowa

<u>Wind Energy in lowa (power point)</u>

This is a worksheet for the corresponding power point

<u>Wind Energy in lowa (worksheet)</u>

# Theoretical Power of Wind

# Kinetic Energy

• KE= ½ mv2, where m = mass & v = velocity

#### Air's Mass

 m = ρAvt, where ρ= air density A = area through which air passes v = velocity & t= time

# Wind Energy

substituting m = pAvt into KE= ½ mv^2 results in KE = ½
 pAvtv^2 or wind energy = ½ pAtv^3

#### Power

- Energy = Power \* time
- Power = Energy/time
- wind energy =  $\frac{1}{2} \rho Atv^3$
- wind power = ½ pAv<sup>3</sup>

#### wind power = $\frac{1}{2} \rho Av^3$

• wind power is directly proportional to the swept area

- wind power is directly proportional to  $\rho$ , air density.
- wind power is directly proportional to v<sup>3</sup>, air velocity cubed.

## Clipper Wind: wind power ∝ swept area

- Swept area =  $\pi r^2$  or  $\pi(d/2)^2$  where d is the diameter
- The blade length or radius of the Clipper Wind Liberty 2.5 MW Wind Turbine (C100) is 48.8 meters and a rotor diameter of 100meters
- The swept area =  $\pi(d/2)^2 = \pi(100\text{meters/2})^2 = 7854\text{m}^2$  (industry uses this method) however,
- With blade length only swept area =  $\pi(r/2)^2 = \pi(48.7m/2)^2 = 7,451m^2$

# Acciona Energy: wind power ∝ swept area

- swept area =  $\pi r^2$  or  $\pi(d/2)^2$  where d is the diameter
- The blade length or radius of the AW-82/1500 Wind Turbine is 40.3 meters and the diameter is 82m
- The swept area =  $\pi(d/2)^2 = \pi(82\text{meters/2})^2 = 5281\text{m}^2$  (industry uses this method) however,
- With blade length only swept area =  $\pi r^2 = \pi (40.3 \text{ m})^2 = 5,102 \text{ m}^2$

# Wind power $\propto \rho$ (air density)

- air density decreases with increases in altitude (for the same wind velocity a turbine is more efficient in lowa than in the mountains)
- air density decreases with increases in temperature (wind turbines are more efficient in the winter than summer)
- · Try this air density calculator

# Wind power ∝ v^3

- Velocity is the most important contributor to wind power
- Example:
- If when v = 5.25 m/s, the wind power is 187.5 kW, then
- When v = 10.5 m/s, the wind power is 1500 kW

This is an **8x increase in power for a 2x increase** in velocity

# Power from Wind

#### Theoretical Wind Power

- Energy = Power \* time
- Power = Energy/time
- wind energy = ½ ρAtv^3
- wind power =  $\frac{1}{2} \rho Av^3$

#### **Betz Factor**

- The ratio of practical power to the power in the wind is called the Betz Factor
- Betz Factor = 16/27 = 0.593

#### **Practical Wind Power**

- wind power = ½cppAv^3
- where cp = 0.593 for wind turbines using the lift (not drag)
   Betz Factor

Clipper Wind: Actual Power Curve

http://www.google.com/

Clipper Wind: Actual Power Curve

- Any power generated by the turbine will be significantly less than ½cppAv3.
- This is a result of losses in converting mechanical to electrical power, friction, etc.

## Clipper Wind: Actual Power Curve

- power =  $\frac{1}{2}$ cppAv3
- For example at v = 10m/s, theoretical power = ½(0.593)\*
   (1.2 kg/m3)\*(7854m2)\*
   (10m/s)3 = 2.79 MW
- At 10 m/s, Actual Power  $\approx$  1800 kW = 1.8 MW
- Efficiency = 64%

# Clipper Wind: Actual Power Curve

- At 5 m/s, Power ≈ 225 kW
- At 10 m/s, Power  $\approx$  1800 kW

# Clipper Wind: Actual Power Curve

After 10 m/s,

- wind power  $\propto$  v3 will not accurately predict the power.
- This is due to the generator and other mechanical components of the turbine being unable to increase power output proportional to the wind velocity

## Clipper Wind: Actual Power Curve

- The cut-out wind velocity of this turbine is 25m/s
- The constant output of power between 13m/s and 25 m/s is achieved through pitch control

## Clipper Wind - Pitch Control

- Pitch control allows the blade of each turbine to be oriented in a manner to maximize wind power prior to 2.5MW on the Liberty 2.5 MW Wind Turbine.
- Once the output reaches 2.5 MW, pitch control will be used to limit the power from the wind in order to maintain a constant 2.5MW output from the generator.

Theoretical Power from the Wind (power point)
Practical Power from the Wind (power point)
Power from the Wind (work sheet)

# HAWT vs. VAWT

# **HAWT - Horizontal Axis Wind Turbines**

- The axis is of rotation is parallel to the ground.
- These are the most common type of turbines.
- Operates on lift principle



## **VAWT - Vertical Axis Wind Turbines**

- This is an image of a Darrieus wind turbine.
- "Eggbeater" turbine is another name.
- It is one type of vertical axis turbine since its axis of rotation is vertical to the ground.
- Have not been very successful commercially
- Operates on lift principle

HAWT VS. VAWT



VAWT – Vertical Axis Wind Turbines

• H-Rotor is another type of VAWT

 It is a vertical axis turbine since its axis of rotation is vertical to the ground.

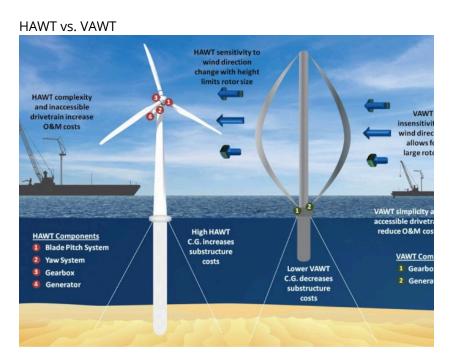
- It can self-start
- Have not been very successful commercially
- · Operates on lift principle



#### VAWT - Vertical Axis Wind Turbines

- Savonius is another type of VAWT
- It is a vertical axis turbine since its axis of rotation is vertical to the ground.
- It can self-start
- Have not been very successful commercially
- · Operates primarily on drag principle

HAWT VS. VAWT




## Lift vs. Drag

 Lift turbines can theoretically capture 59% of the wind (Betz Limit)

- Drag turbines can theoretically capture 15% of the wind
- Drag turbine requires more material

source: Gipe, Paul. Wind Power. White River Junction, VT: Chelsea Green Publishing Company, 2004.



#### HAWT vs. VAWT

- HAWT ADVANTAGES
  - The wind is stronger at greater heights. A HAWT can be placed at heights to take advantage of

HAWT VS. VAWT

- strong winds.
- Good performance & reliability
- Self-starting
- Commercially successful

#### VAWT – DISADVANTAGES

 The wind is weaker at ground level and there is more turbulence at ground level due to obstructions.

23

- Notorious for poor reliability since the lift forces reverse direction every revolution.
- Darrieus' design can't be self-starting unless orientated properly.

#### HAWT vs. VAWT

#### HAWT – DISADVANTAGES

- Difficult to service due to height. In most models, a crane is needed to install a new generator or drivetrain.
- Needs yaw system to track the wind.

#### VAWT – ADVANTAGES

- Generator & drivetrain is at ground level so that it is easier to service.
- It is omnidirectional so it does not need gears & controls to track the wind.

Horizontal Axis vs. Vertical Axis Turbines what are the advantages and disadvantages of each.

<u>HAWT vs VAWT (power point)</u> <u>HAWT\_vs\_VAWT (work sheet)</u>

# Why Are Turbine Blades in Groups of 3?

Why are turbine blades in groups of 3?

- A condition called chatter occurs when a turbine with two blades attempts to yaw.
- This condition occurs because the moment of inertia of a blade is significantly greater when it is horizontal than when it is vertical to the ground.

#### Moment of Inertia for the blade when horizontal

 The moment of a two-blade system when it is horizontal to the ground is given by

1/12 ML2 where M is the mass and L is the length of both blades.

• If an AW-1500 turbine had only two blades, the moment of inertia when the blades are horizontal would be  $1/12(11,560 \text{ kg})(80.6 \text{ meters})2 = 6.26 \times 106 \text{ kg-meters}$ .

#### Moment of Inertia for the blade when vertical

- The moment of a two-blade system when it is perpendicular to the horizon is given by
- 1/2 Mr2 where M is the mass and r is the radius of one of the blades.
- If an AW-1500 turbine had only two blades, the moment of inertia when the blades are vertical would be 1/ 2(11,560 kg)(1 meter)2 = 5,780 kg-meters2.
- Note the 1-meter radius of a blade is an estimate and the blade is not a true cylinder, but this is a useful model.

#### The Difference in Moment of Inertia

- For a hypothetical 2 blade setup, the horizontal moment of inertia would be 6.26 x 10<sup>6</sup> kg-meters<sup>2</sup>, and when vertical would be 5,780 kg-meters<sup>2</sup>.
- The horizontal moment is over 1,000 times greater than the vertical moment.
- This difference causes chatter

#### 3 Blades to the rescue!

• For 3 blades, the moment of inertia is always the same since the x and y components of all the blades balance out each other at any point in its rotation.

# Components of a Wind Generator

## Pitch - refers to the angle of the blade

The pitch can be changed to increase or decrease the rotational velocity

# Brake – is used to stop rotation

 On the Acciona AW-1500 turbine, the brake is a single disk.

# Low Shaft Speed

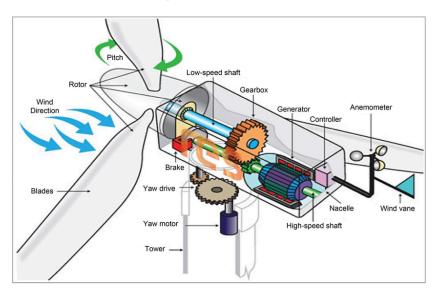
• On the Acciona AW-82/1500 turbine, the low-speed shaft rotates at a max of 16.7 rpm.

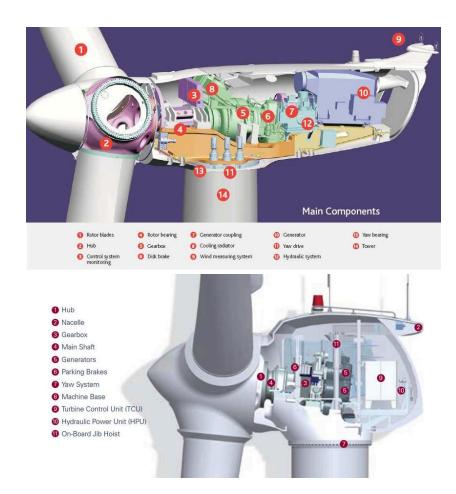
# High Shaft Speed

• On the Acciona AW-82/1500 turbine, the high-speed shaft rotates at 1320 rpm.

#### Gearbox

• On the Acciona AW-82/1500 turbine, the gearbox ratio is 1:78. For every 1 revolution of a blade, the generator


spins 78 times.


## Nacelle

• The nacelle is the covering that encloses the generator, gears, brakes, etc.

#### Yaw Drive + Motor

• The towers are 80 meters high in a standard Liberty 2.5MW turbine system.





| This is where you can add appendices or other back matter. |  |
|------------------------------------------------------------|--|
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |
|                                                            |  |